Sei A ein kommutativer Ring und seien $I, J \subset A$ Ideale. Dann sind auch

$$I + J = \{i + j \mid i \in I, j \in J\} ,$$

$$I \cdot J = \{ \sum_{\alpha} i_{\alpha} j_{\alpha} \mid i_{\alpha} \in I, j_{\alpha} \in J\} ,$$

$$I \cap J$$

Ideale in A. Es gilt $I \cdot J \subset I \cap J$ (Warum?).

I, J heißen teilerfremd, falls I + J = A. Z.B. für $A = \mathbb{Z}$ sind die Ideal $m\mathbb{Z}$ und $n\mathbb{Z}$ teilerfremd (also $m\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$), genau dann, wenn ggT(m, n) = 1.

Lemma. Sind I, J teilerfremd, so gilt $I \cdot J = I \cap J$.

Beweis. Es bleibt zu zeigen, dass $I \cdot J \supset I \cap J$. Da I + J = A, können wir $i \in I$ und $j \in J$ finden, so dass i + j = 1. Für $x \in I \cap J$ gilt $x = x1 = x(i + j) = xi + xj \in I \cdot J$.

Satz. Sei A ein kommutativer Ring und seien I_1, \ldots, I_n paarweise teilerfremde Ideale in A. Dann induziert der Ringhomomorphismus

$$\varphi: A \longrightarrow A/I_1 \times \cdots \times A/I_n$$
 , $a \mapsto (a + I_1, \cdots, a + I_n)$

einen Ringisomorphismus

$$\bar{\varphi}: A/\prod_{i=1}^n I_i \longrightarrow A/I_1 \times \cdots \times A/I_n$$
.

Beweis.

1. I_i und $\prod_{j\neq i} I_j$ sind teilerfremd:

Per Annahme sind I_j und I_i teilerfremd für $j \neq i$. Somit gibt es $x_j \in I_j$ und $y_j \in I_i$ mit $x_j + y_j = 1$. Damit folgt

$$1 = \prod_{j \neq i} (x_j + y_j) = \prod_{j \neq i} x_j + \text{(Terme mit mindestens einem Faktor } y_j).$$

Der erste Summand liegt in $\prod_{j\neq i}I_j$ und jeder Summand in der restlichen Summe liegt in I_i (da $y_j\in I_i$). Daher $1\in (\prod_{j\neq i}I_j)+I_i$.

2. $\prod_{i=1}^{n} I_i = \bigcap_{i=1}^{n} I_i$:

Per Induktion über n. Für n=2 ist dies die Aussage des Lemmas. Die Aussage gelte nun für n-1. Nach Teil 1 sind I_n und $\prod_{j\neq n} I_j$ teilerfremd. Nach dem Lemma gilt daher $I_n \cdot \prod_{j\neq n} I_j = I_n \cap \prod_{j\neq n} I_j$. Nach Induktionsvoraussetzung ist ferner $\prod_{j\neq n} I_j = \bigcap_{j\neq n}^n I_j$.

3. $\ker \varphi = \prod_{i=1}^n I_i$:

Per Definition von φ gilt ker $\varphi = \bigcap_{i=1}^n I_i$. Damit folgt die Behauptung aus Teil 2.

4. φ ist surjektiv:

Seien $a_1, \ldots, a_n \in A$ gegeben. Wir zeigen, dass es $x \in A/\prod_i I_i$ gibt, mit $\varphi(x) = (a_1 + I_1, \ldots, a_n + I_n)$. Für jedes $i = 1, \ldots, n$ gibt es nach Teil 1 $u_i \in I_i$ und $v_i \in \prod_{j \neq i} I_j$ mit $u_i + v_i = 1$. Setze $x = \sum_{i=1}^n v_i a_i$. Für jedes $k = 1, \ldots, n$ gilt

$$x + I_k = v_k a_k + I_k = (1 - u_k)a_k + I_k = a_k + I_k$$

da $v_i \in I_k$ für $i \neq k$, und da $u_k \in I_k$.

Da $A/\ker\varphi\cong \mathrm{im}\varphi$ als Ringe (2.1, Kor. 2), mit Isomorphismus $\bar{\varphi}$, folgt der Satz aus Teil 3 und 4.

Korollar. (Chinesischer Restsatz)

Seien $m_1, \ldots, m_n \in \mathbb{Z}_{>0}$ paarweise teilerfremd (d.h. $ggT(m_i, m_j) = 1$ für $i \neq j$). Dann ist

$$\mathbb{Z}/(m_1 \cdots m_n \mathbb{Z}) \longrightarrow \mathbb{Z}/m_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/m_n \mathbb{Z}$$

 $x + m_1 \cdots m_n \mathbb{Z} \longmapsto (x + m_1 \mathbb{Z}, \cdots, x + m_n \mathbb{Z})$

wohldefiniert und ein Ringisomorphismus.